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direction of the Poynting vector shows more clearly transient

characteristics of the directional coupler by presenting the pat-

tern of the flow of the electromagnetic energy.

IV. CONCLUSION

The time variation of electromagnetic fields can be described

in two ways. Either the instantaneous distribution is shown or the

spatial distribution obtained by taking the envelope of the maxi-

mum value during the observation time intervaf is shown. Using

the former method, for example, the detailed propagation char-

acteristics such as the phase and the amplitude of the coupled

microstrip slotline at each mode is known. Using the latter

method, the process by which the stationary property of the

directional coupler is brought about can be known. Also, the

expression of the time variation of the instantaneous distribution
and the Poynting vector shows more clearly the transient char-
acteristics of the complicated circuit elements, such as the direc-
tional coupler. These can be realized by using al electromagnetic
components. As shown in this paper, this condition is satisfied by
the present method.

In addition, we cart easily study the time variations of field in
the case of pulse waves where the analysis of the transient
phenomena is very important. More analysis is needed for when
the size of the slot becomes less, Z~v~n increases, and Zti~
decreases, so that a higher coupling directional coupler can be
obtained. This subject and results of the puke wave analysis will
be reported in a later paper.
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Focused Heating in Cylindrical Targets—Part 11

JAMES R. WAIT, FELLOW, IEEE, AND MIKAYA LUMC)RI

,4/mtracf — We implement the analytical formulation for the local” power

dissipated in a conductive target of cylindrical form that was described in

Part L Tfte scheme employs a number N of horn apertures arranged

around the periphery of the target. We show sample results for the radial

astd the azimuthal variations of the normalized local power. The cases

where the array is focused at both the center of the target and where it is

focused at an eccentric point are considered for N =4, 8, aud 16. It is

shown that the unwanted secondary “hot spots” can be eliminated if the

number N of horn apertures is increased sufficiently. The results are

relevant to microwave thermic heating in cancer therapy.

I. INTRODUCTION

The formulation given in a previous communication on focused

heating [1] in a cylindrical conductor has now been implemented

numerically. The scheme involves placing N aperture sources

around the periphery of the target. IU our example here, we have

chosen N = 4, 8, and 16. The formulation follows that in Part I,

but we now normalize the results for the purpose of graphical

presentation. Finally, we draw some generaf conclusions about

the nature of electromagnetic heating in hyperthermia.

II. DESCRIPTION OF THE MODEL

The assumed geometry of the configuration is purely two

dimensional, as described quite fully in Part I. The cylindrical

target of radius a is homogeneous with conductivity u, permittiv-
ity c, and the free-space permeability PO.The horn apertures are

disposed around the periphery, arranged so that no gaps exist
between them. As indicated in [1, fig. 1] the center of each
aperture is located at ~,, = nr/N, where n = 0,1,2, . . . N – 1.

Because of the assumed polarization of the excitation, the

electric field in the target has only an axial or z component,

which is written conveniently in the form .

n=O

Here

E,, n(p, +) = A,le’*n ~ An,ln,(yp)e-l”’( o-o-)
Jry..m

is the field produced by the n th aperture, where Am is a coeffi-

cient, 1., ( yP) is the modified Bessel function of argument YP, and

y is the complex propagation constant of the homogeneous

interior of the target. We recall that y = [ ZPOQ( u + ico)]l/2 for a

time factor exp ( imt).

Each aperture is assumed to have the same field distribution

(as a function of +), but the relative amplitude A,, and phase 8.

of each aperture are controllable. For the results presented here,

we assume that the horn apertures are in direct contact with the

target (i.e., b = a in [1, fig. l]). Thus, we can write

1
An, =

J

n/N

27rI., ( ya) - r/N
Ez,o(a, ~) e’m+ d+

where E,,O( a, @) is the aperture illumination over the reference
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Fig. 1 Local power dissipation as a function of radm] coordinate for the

aperture array focused at the center of the conductive cylindrical target.

Curve 4 for N = 4 apertures, B for N =8, and C for N = 16.

horn at $ = +0 = OO. In accordance with Part I, we choose

EZ,o(a,4) = Ez,o(a,O)cos(N@/2)

for–v/N<@<+ n/N

where

E,,. = EO. AO. e’80

Thus, we find without difficulty that

2 nrnl ( Ya ) ~,,1

= Eon/N, m= N/2,

Now the local power dissipation at the point (p, ~ ) in the

target is u 1E= ( p, @) lz in W/m3, where IJ is the conductivity. To

facilitate the presentation, we define a normalized power density

by the ratio

~(P,+) ‘@,(P>@)\2/’@=~
where

N–1

Ere~ = (Eo/N) ~ A,,
~=o

is a convenient reference field magnitude.

III. PRESENTATION OF RESULTS

For illustrative purposes, we choose an operating frequency of

915 MHz, cylinder radius a = 6.0 cm, target conductivity u = 1.28

s/m, and a relative permittivity c \co = 51. These latter two

parameters are typical of biological materials such as human

muscle [2]. We now easily deduce that Iya I = ‘7.5 and arg( ya ) =

76.9°.

We first of all consider the symmetrical situation where all N

apertures are excited in phase with equal amplitude, i.e., 8. = O

and A,, =1. In this case, the primary focus of the array is at the

center p = O, so we really need to show only the variation of the

normalized local power P as a function of the normalized radial

TABLE I

VALUES OF 8H IN DEGREES

n N=4 N. a N.16

o - 170,0 178.5 174.7

1 42.5 -97. z

2 -152.1

-158.4

61.4 -92.5

3 42.5 -171.5 -12.4

4 -153.1 65.6

5 -171.5 138 2

6 61.4 -167, 6

7 -97.2 -149.7

8

9

-154.6

-149.7

10 -167.7

11 139.2

12 65. b

13

14

-12.4

-92.5

15 -158.4

- I m ! , , ,’,

,!
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/
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Fig. 2, Local power dmlpation for the array focused at p = Pf = O 5a as a

function of the radial coordinate for @ = 0°, where the A, B, and C curves

correspond to N = 4, 8, and 16, respectwely.

distance p/a from O to 1.0. Such results are shown in Fig. 1 for

the three cases where the number N of apertures is 4, 8, and 16.

The results show that local power dissipation is quite significant

at both the center of the target and at the periphery. Of particular

importance is the fact that the N = 4 aperture case has a larger

power dissipation in the region between p/a = 0.5 and 0.9. As N

increases, we see that power levels are virtually unchanged near

the center of the target but the power in the outer region has

reduced levels at least along the radial @= OO.

To illustrate the control of the focusing, we select the phase 8,,

such that the phase of the signal E,,,, (p,, O) for each value of n

is the same. The prescription for doing this is spelled out ex-

plicitly in Part I. In other words, we are focusing the array of

horn apertures to the point p = p, at @= OO. Of course, it is

always possible that other foci, so defined, will exist. We can call

these secondary “hot spots.” In the present case, we choose the

amplitude factors A,, =1.0 for all n. Furthermore, in order to

show a concrete example, we specify that p, /a = 0.5. The values

of 8,,, expressed in degrees, for N = 4, 8, and 16, are listed in

Table 1,
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F]g. 3 Local power dmsipatlon for the array focused at p = pf = O 5a as a

function of the azimuthal coordinate for p = 0.5 a, where the A, B, and C

curw’es correspond to N = 4, 8, 16, respectively (Note that curve C does not

show the details of the ripples, see text.)

Using the values of 8. indicated above, the normalized local

power P is shown plotted in Fig. 2 as a function of the normal-

ized radiaf distance p/a for + = 0° for the three cases N = 4, 8,

16. As indicated, there is a significant enhancement of the power

dissipation in the region of the focus point p,/a = 0.5. Further-

more, the focus is most pronounced for the case of N =16. To

give some idea of the azimuthal variation of the power levels, P

is plotted in Fig. 3 for the same condition, as a function of the

angle +, ad for fixed p/a = 0.5. Here, we see rather dramati-
cally that there are noticeable secondary “hot spots” for the

N = 4 case at the 90° points. On the other hand, for the N = 8

and N =16 cases, the secondary maxima do not appear. Not

surprisingly, we see that the ripples in the azimuthal variation

become greater in number as N increases. (Actually this detail is

not evident in Fig. 3 for the N =16 case because of computa-

tional limitations.)

IV. CONCLUDING REMARKS

The limitations for controlling the local power dissipation in a

cylindrical target are rather severe. We have attempted to il-

lustrate the problem with a two-dimensional model consisting of

a concentric aperture array system with a prescribed form of

excitation. It is confirmed that some power enhancement takes

place at the focus point, but care must be taken to account for

secondary foci where additional “hot spots” may occur. The

latter will occur when the number of a~erture elements in the

array are insufficient and\or the electrical size of the cylinder is

large, such that significant phase interference occurs between the

individual aperture contributions at other than the desired focus

point. Further investigations that deaf with the aperture design

problem are underway. One possible scheme is to modify the
relative amplitude factors A,, of the individual apertures to

reduce the spurious “hot spots,” but care must be taken not to

accomplish this at the expense of greater heating of the peripheral

regions of the target. It would also be useful to extend the present

numerical scheme to three-dimensional models (i.e., the axially-

bounded aperture for layered cylindrical models) such as treated

by Ho, Guy, Sigelmann, and Lehman [3]. These investigators,

however, did not explicitly consider focusing.
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Numerical Analysis of Various Configurations

of Slab Lines

GIOVANNI B, STRACCA, GIUSEPPE MACCHIARELLA,

AND MARCO POLITI

Abstract — Numerical solutious are presented for the characteristic im-

pedance of various line structures derived from the slab line, which allow

the calculation also of the even and odd impedance of coupled slab lines.

Some approximated formulas are also deri~ed, which match the numerical

results with good precision for a large range of geometrical dimensions of

the structures.

The results presented here are compared with some formulas and

numerical results available from previous technical papers.

I. INTRODUCTION

In this paper, both numerical solutions and analytical inter-

polating formulas are presented for the characteristic impedance

of the various transmission-line structures shown in Fig. 1. The

structure in Fig. l(a) is the well-known slab line, which is

composed of a cylindrical metallic rod of diameter d, placed

symmetrically between two ptiallel ground planes AA’ and BB’

at a distance h. The structure of Fig. l(b), known as the trough

line, and that of Fig. l(c) are derived from the slab line by

introducing in Section CD an electric conductor plane (short

circuit) (Fig. l(b)) or a magnetic conductor plane (open circuit)

(Fig. l(c)), orthogonal to the ground planes and at a distance c/2

from the center of the rod.

The characteristic impedance of the structure of Fig. l(b) is

equal to the odd characteristic impedance ZCO of two-coupled

equal slab lines (Fig. 2), separated by a distance c; in addition,

the characteristic impedance of the structure in Fig. l(c) is also

equaf to the even characteristic impedance Z,, of the structure in

Fig. 2. Both characteristic impedances of the two transmission

lines of Fig. l(b) and (c) approach the characteristic impedance

Z< of the slab line, when the distance c/2 is very large.
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