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direction of the Poynting vector shows more clearly transient
characteristics of the directional coupler by presenting the pat-
tern of the flow of the electromagnetic energy.

IV. CONCLUSION

The time variation of electromagnetic fields can be described
in two ways. Either the instantaneous distribution is shown or the
spatial distribution obtained by taking the envelope of the maxi-
mum value during the observation time interval is shown. Using
the former method, for example, the detailed propagation char-
acteristics such as the phase and the amplitude of the coupled
microstrip slotline at each mode is known. Using the latter
method, the process by which the stationary property of the
directional coupler is brought about can be known. Also, the
expression of the time variation of the instantaneous distribution
and the Poynting vector shows more clearly the transient char-
acteristics of the complicated circuit elements, such as the direc-
tional coupler. These can be realized by using all electromagnetic
components. As shown in this paper, this condition is satisfied by
the present method.

In addition, we can easily study the time variations of field in
the case of pulse waves where the analysis of the transient
phenomena is very important. More analysis is needed for when

the size of the slot becomes less, Z_., increases, and Z g

decreases, so that a higher coupling directional coupler can be
obtained. This subject and results of the pulse wave analysis will
be reported in a later paper.
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Focused Heating in Cylindrical Targets— Part i1
JAMES R. WAIT, FELLOW, IEEE, AND MIKAYA LUMORI

Abstract —We implement the analytical formulation for the local“power
dissipated in a conductive target of cylindrical form that was described in
Part 1. The scheme employs a number N of horn apertures arranged
around the periphery of the target. We show sample results for the radial
and the azimuthal variations of the normalized local power. The cases
where the array is focused at both the center of the target and where it is
focused at an eccentric point are considered for N =4, 8, and 16. It is
shown that the unwanted secondary “hot spots” can be eliminated if the
number N of horn apertures is increased sufficiently. The results are
releyant to microwave thermic heating in cancer therapy.

I. INTRODUCTION

The formulation given in a previous communication on focused
heating [1] in a cylindrical conductor has now been implemented
numerically. The scheme involves placing N aperture sources
around the periphery of the target. In our example here, we have
chosen N =4, 8, and 16. The formulation follows that in Part I,
but we now normalize the results for the purpose of graphical
presentation. Finally, we draw some general conclusions about
the nature of electromagnetic heating in hyperthermia.

II. DESCRIPTION OF THE MODEL

The assumed geometry of the configuration is purely two
dimensional, as described quite fully in Part I. The cylindrical
target of radius a is homogeneous with conductivity o, permittiv-
ity €, and the free-space permeability p,,. The horn apertures are
disposed around the periphery, arranged so that no gaps exist
between them. As indicated in [1, fig. 1] the center of each
aperture is located at ¢, = n7/N, where n=20,1,2,--- N—1.

Because of the assumed polarization of the excitation, the
electric field in the target has only an axial or z component,
which is written conveniently in the form

N-1

E.(p,9)= X E. (p.9).
n=0

k3

Here

+oo
E:,'l(p7¢) =Ane’8" Z Aﬂllnl(yp)e_l"’(¢—¢n)

= —00
is the field produced by the nth aperture, where 4, is a coeffi-
cient, I,,(y,) is the modified Bessel function of argument yp, and
vy is the complex propagation constant of the homogeneous
interior of the target. We recall that y = [ipgw (o + i€w)]'/? for a
time factor exp(iwt).

Each aperture is assumed to have the same field distribution
(as a function of ¢), but the relative amplitude A, and phase 3,
of each aperture are controllable, For the results presented here,
we assume that the horn apertures are in direct contact with the
target (i.e., b=a in [1, fig. 1]). Thus, we can write

1 /N
A = E. ,(a,¢)e™*d
m 2'”1,,,(7!1) f—vr/N 4..0( 4)) ¢

where E_ ;(a,¢) is the aperture illumination over the reference
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Fig. 1 Local power dissipation as a function of radial coordinate for the
aperture array focused at the center of the conductive cylindrical target.
Curve 4 for N =4 apertures, B for N=8§, and C for N =16.

horn at ¢ = ¢, = 0. In accordance with Part I, we choose
. o(a.8) = E, o(,0) cos (N,/2)
for —m/N<¢<+a/N

where

E o=E, A, e

Thus, we find without difficulty that
2 WI"I ( ‘Ya) A”I

E,N
- m cos(mm/N), m+N/2
= Egn/N.  m=N/2.

Now the local power dissipation at the point (p,¢) in the
target is o|E.(p, ¢)|* in W/m’, where ¢ is the conductivity. To
facilitate the presentation, we define a normalized power density
by the ratio

P(p,$)=|E.(p, ) /EL

where

N-—-1
Ercf = (EO/N) Z An
n=0
is a convenient reference field magnitude.

III. PRESENTATION OF RESULTS

For illustrative purposes, we choose an operating frequency of
915 MHz, cylinder radius a = 6.0 cm, target conductivity ¢ =1.28
s/m, and a relative permittivity € /e, =51. These latter two
parameters are typical of biological materials such as human
muscle [2]. We now easily deduce that |ya|= 7.5 and arg(ya) =
76.9°.

We first of all consider the symmetrical situation where all N
apertures are excited in phase with equal amplitude, ie., §, =0
and A, =1. In this case, the primary focus of the array is at the
center p = 0, so we really need to show only the variation of the
normalized local power P as a function of the normalized radial
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TABLE I
VALUES OF 8, IN DEGREES

n N =4 N= 8 N= 16
0 ~ 170, 0 178.5 174, 7
1 42.5 -97.2 -158, 4
2 -152.1 61.4 -92.5
3 42.5 -17L.5 -12,4
4 -1531 65.6
5 .17 5 138 2
6 61.4 -167.6
7 -97.2 -149. 7
8 -154. 6
9 -149.7
10 -167. 7
1 138.2
12 65.6
13 -12.4
14 -92.5
15 -158. 4
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Fig. 2. Local power dissipation for the array focused at p = pr=05a as a

function of the radial coordinate for ¢ = 0°, where the 4, B, and C curves
correspond to N =4, 8, and 16, respectively.

distance p/a from 0 to 1.0. Such results are shown in Fig. 1 for
the three cases where the number N of apertures is 4, 8, and 16.
The results show that local power dissipation is quite significant
at both the center of the target and at the periphery. Of particular
importance is the fact that the N =4 aperture case has a larger
power dissipation in the region between p/a = 0.5 and 0.9. As N
increases, we see that power levels are virtually unchanged near
the center of the target but the power in the outer region has
reduced levels at least along the radial ¢ = 0°,

To illustrate the control of the focusing, we select the phase. §,
such that the phase of the signal E, , ( py,0) for each value of n
is the same. The prescription for doing this is spelled out ex-
plicitly in Part I. In other words, we are focusing the array of
horn apertures to the point p =p; at ¢="0° Of course, it is
always possible that other foci, so defined, will exist. We can call
these secondary “hot spots.” In the present case, we choose the
amplitude factors A, =1.0 for all ». Furthermore, in order to
show a concrete example, we specify that pr/a=0.5. The values
of §,, expressed in degrees, for N=4, 8, and 16, are listed in
Table I,
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Fig. 3 Local power dissipation for the array focused at p=p,=05¢ as a
function of the azimuthal coordinate for p = 0.5 a, where the 4, B, and C
curves correspond to N = 4, 8, 16, respectively (Note that curve C does not
show the details of the ripples, see text.)

Using the values of §, indicated above, the normalized local
power P is shown plotted in Fig. 2 as a function of the normal-
ized radial distance p/a for ¢ = 0° for the three cases N =4, §,
16. As indicated, there is a significant enhancement of the power
dissipation in the region of the focus point p;/a = 0.5. Further-
more, the focus is most pronounced for the case of N=16. To
give some idea of the azimuthal variation of the power levels, P
is plotted in Fig. 3 for the same condition, as a function of the
angle ¢, and for fixed p/a = 0.5. Here, we see rather dramati-
cally that there are noticeable secondary “hot spots” for the
N =4 case at the 90° points. On the other hand, for the N =8
and N =16 cases, the secondary maxima do not appear. Not
surprisingly, we see that the ripples in the azimuthal variation
become greater in number as N increases. (Actually this detail is
not evident in Fig. 3 for the N =16 case because of computa-
tional limitations.)

IV. CONCLUDING REMARKS

The limitations for controlling the local power dissipation in a
cylindrical target are rather severe. We have attempted to il-
lustrate the problem with a two-dimensional model consisting of
a concentric aperture array system with a prescribed form of
excitation. It is confirmed that some power enhancement takes
place at the focus point, but care must be taken to account for
secondary foci where additional “hot spots” may occur. The
latter will occur when the number of aperture clements in the
array are insufficient and /or the electrical size of the cylinder is
large, such that significant phase interference occurs between the
individual aperture contributions at other than the desired focus
point. Further investigations that deal with the aperture design
problem are underway. One possible scheme is to modify the
relative amplitude factors A, of the individual apertures to
reduce the spurious “hot spots,” but care must be taken not to
accomplish this at the expense of greater heating of the peripheral
regions of the target. It would also be useful to extend the present
numerical scheme to three-dimensional models (i.e., the axially-
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bounded aperture for layered cylindrical models) such as treated
by Ho, Guy, Sigelmann, and Lehman [3]. These investigators,
however, did not explicitly consider focusing.
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Numerical Analysis of Various Configurations
of Slab Lines

GIOVANNI B. STRACCA, GIUSEPPE MACCHIARELLA,
AND MARCO POLITI

Abstract —Numerical solutions are presented for the characteristic im-
pedance of various line structures derived from the slab line, which allow
the calculation also of the even and odd impedance of coupled slab lines.
Some approximated formulas are also derived, which match the numerical
results with good precision for a large range of geometrical dimensions of
the structures.

The results presented here are compared with some formulas and
numerical results available from previous technical papers.

I. INTRODUCTION

In this paper, both numerical solutions and analytical inter-
polating formulas are presented for the characteristic impedance
of the various transmission-line structures shown in Fig. 1. The
structure in Fig. 1(a) is the well-known slab line, which is
composed of a cylindrical metallic rod of diameter d, placed
symmetrically between two parallel ground planes A4’ and BB’
at a distance 4. The structure of Fig. 1(b), known as the trough
line, and that of Fig. 1(c) are derived from the slab line by
introducing in Section CD an electric conductor plane (short
circuit) (Fig. 1(b)) or a magnetic conductor plane (open circuit)
(Fig. 1(c)), orthogonal to the ground planes and at a distance ¢/2
from the center of the rod.

The characteristic impedance of the structure of Fig. 1(b) is
equal to the odd characteristic impedance Z,, of two-coupled
equal slab lines (Fig. 2), separated by a distance ¢; in addition,
the characteristic impedance of the structure in Fig. 1(c) is also
equal to the even characteristic impedance Z , of the structure in
Fig. 2. Both characteristic impedances of the two transmission
lines of Fig. 1(b) and (c) approach the characteristic impedance
Z_ of the slab line, when the distance ¢/2 is very large.
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